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1. Abstract 

1.1. Aims 

Head and neck squamous cell carcinoma (HNSC) diagnosis is 

complicated by tumor heterogeneity and subjective evaluation. 

This study aimed to evaluate whether AI-driven pathology 

foundation models trained on diverse whole-slide images 

(WSIs) can provide prognostic features that improve diagnostic 

accuracy, reduce inter-observer variability, and ultimately 

enhance patient outcomes. 

1.2. Methods 

WSIs, clinical, and mRNA expression data for HNSC were 

obtained from The Cancer Genome Atlas (TCGA) and Clinical 

Proteomic Tumor Analysis Consortium (CPTAC). Three 

pathology foundation models (PRISM, Prov-GigaPath, and 

MADELEINE) were applied to extract features from each 

WSI. Stepwise variable selection in Cox proportional hazards 

models was performed, and prognostically significant features 

were identified using the lowest p-value cutoff. Spearman's 

correlation (≥0.3) linked features to mRNA expression, followed 

by Gene Ontology Biological Process (GO-BP) enrichment with 

false discovery rate (FDR) correction. 

1.3. Results 

A total of 589 cases (447 TCGA, 142 CPTAC) showed 

comparable survival distributions. Across models, 10–11% of 

extracted features were highly inter-correlated. A smaller subset 

(0.89–2.09%) demonstrated strong correlations with mRNA 

expression, repeatedly highlighting genes such as PXYLP1 

and BCL10. GO enrichment revealed biologically relevant 

processes including epidermis development and keratinocyte 

differentiation, underscoring the clinical significance of these 

AI-derived features. 

1.4. Conclusion 

Pathology foundation models demonstrate strong potential in 

identifying prognostic morphological features in HNSC. Despite 

variability across cohorts and models, these approaches show 

promise for improving diagnostic precision and advancing 

patient care through earlier and more accurate prognostication. 

2. Introduction 

Its incidence varies across regions, strongly influenced by 

tobacco and alcohol use as well as human papillomavirus 

(HPV) infection, which adds to the epidemiological complexity 

of the disease [1]. Its incidence varies across regions, 

strongly influenced by tobacco and alcohol use as well as 

human papillomavirus (HPV) infection, which adds to the 

epidemiological complexity of the disease [2]. Despite advances 

in surgery, radiotherapy, chemotherapy, and targeted therapy, 

prognosis for advanced HNSC remains poor. Histopathological 

examination remains the diagnostic gold standard [3]. A major 

challenge lies in the marked heterogeneity of HNSC. Individual 

tumors often exhibit diverse differentiation patterns, ranging 

from well- to poorly differentiated cells, and are embedded in a 

complex tumor microenvironment (TME) comprising immune, 

stromal, and vascular elements [4]. This morphological diversity 

contributes to interpretive variability, with outcomes influenced 

by both the subjectivity of microscopy-based assessments 

and inter-observer differences [5]. Recent computational 

approaches aim to mitigate these challenges by reducing 

variability and standardizing evaluations. The digitization 

of whole-slide images (WSIs) has enabled the integration of 
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artificial intelligence (AI) and machine learning (ML) into 

pathology. Deep learning-particularly Convolutional Neural 

Networks (CNNs)-has transformed image analysis by learning 

discriminative features directly from large datasets [6]. In 

pathology, CNNs have already demonstrated success in mitotic 

figure detection, tumor segmentation, and tissue classification 

[7]. Uilding on this, the concept of foundation models has 

emerged [9]. These are large-scale neural networks trained on 

diverse WSI collections across cancer types, staining protocols, 

and institutions. Exposure to such variation allows the models to 

learn broadly representative morphological patterns, which can 

then be transferred to new tasks through fine-tuning [9]. Their 

strength lies in leveraging generalized histological knowledge, 

thereby improving adaptability and efficiency for downstream 

clinical and research applications. In HNSC, pathology 

foundation models offer distinct advantages. First, they analyze 

entire WSIs rather than limited regions of interest, ensuring 

that subtle but clinically important features-such as stromal 

invasion at tumor boundaries-are not overlooked [10]. Second, 

they can detect patterns beyond human perception, including 

early perineural invasion or nuanced stromal alterations [11]. 

Third, by producing objective and reproducible outputs, these 

models have the potential to minimize inter-observer variability 

and accelerate diagnostic workflows [12]. Collectively, these 

capabilities may enable faster, more accurate diagnoses and 

more reliable clinical decision-making. Clinically, the ability 

to identify and quantify histopathological features at scale has 

far-reaching implications. Detecting occult stromal invasion or 

early perineural infiltration could influence surgical margins and 

decisions regarding adjuvant therapy [13]. Quantifying tumor- 

infiltrating lymphocytes may help predict immunotherapy 

response, particularly in HPV-associated oropharyngeal cancers 

[14]. Beyond individual patient care, large-scale computational 

analyses of WSIs can deepen understanding of the HNSC 

TME, revealing spatial immune or stromal patterns associated 

with prognosis and treatment response [15]. Such insights are 

difficult to achieve through manual review alone but are well 

suited to AI-driven analysis. Through a systematic evaluation of 

multiple publicly available datasets, we aim to demonstrate how 

pathology foundation models can enhance diagnostic accuracy, 

reduce variability, and provide biologically meaningful insights- 

advancing both clinical management and translational research 

in head and neck oncology. 

3. Materials & Methods 

3.1. Data Acquisition 

Whole-slide images (WSIs) of head and neck squamous cell 

carcinoma (HNSC) were obtained from two publicly accessible 

repositories: The Cancer Genome Atlas (TCGA) and the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC). 

TCGA-HNSC data were downloaded through the Genomic Data 

Commons (GDC) portal (https://portal.gdc.cancer.gov/), while 

CPTAC-HNSC datasets were accessed via the CPTAC Data 

Portal (https://proteomics.cancer.gov/data-portal/). 

Searches were conducted using the keyword HNSC, and filters 

were applied to isolate diagnostic WSIs in standard formats 

(e.g., SVS). Patient-level clinical information, including 

overall survival (OS) time and survival status, was linked to the 

corresponding WSIs using patient identifiers. These clinical data 

were harmonized across cohorts for integrated survival analyses. 

Additionally, mRNA expression profiles associated with each 

case were retrieved and merged with the histopathology data to 

facilitate multimodal analyses. 

3.2. Slide Feature Extraction Model Setup 

The overall workflow of the study is summarized in Figure 1. 

Three pathology foundation models-PRISM, Prov-Giga Path, 

and MADELEINE-were employed for feature extraction [6- 

18]. The models of PRISM, Prov-Giga Path, and MADELEINE 

were obtained in https://huggingface.co/paige-ai/Prism, https:// 

huggingface.co/prov-gigapath/prov-gigapath and https://github. 

com/mahmoodlab/MADELEINE, respectively. For PRISM 

and Prov-Giga Path, WSIs were segmented into smaller non- 

overlapping patches at the required magnification using a custom 

Python script based on the Open Slide library. MADELEINE 

incorporates an end-to-end pipeline that processes entire WSIs 

directly to generate feature vectors. All extracted features were 

stored in a structured tabular format for downstream survival 

and bioinformatics analyses. 

3.3. Slide Analysis Based on Survival Analysis 

Prognostic evaluation of the WSI-derived features was performed 

using the Cox proportional hazards regression model. Initially, 

each feature was subjected to univariable Cox analysis to assess 

its association with overall survival. Harrell's concordance 

index (c-index) was calculated for each feature as a continuous 

variable, and the results were corrected using a 1,000-trial 

bootstrap procedure to provide a robust estimate of predictive 

performance. To further examine clinical relevance, a “best 

p-value cutoff” strategy was implemented [19]. For each feature, 

multiple candidate cutoff values were tested, and the threshold 

that produced the most statistically significant separation in 

overall survival was selected. This data-driven approach was 

chosen over conventional cutoffs, such as the median or mean, in 

order to account for nonlinear or skewed distributions. To avoid 

artificially small subgroups, a minimum group size of 10% of 

the cohort was required when determining cutoffs. Patients were 

then stratified according to the optimal cutoff for each feature, 

and Kaplan–Meier survival curves were generated to illustrate 

differences in overall survival between groups. Together, these 

analyses allowed us to identify foundation model-derived 

features with significant and reproducible prognostic value in 

HNSC. 

3.4. Functional Enrichment Analysis and Statistical Analysis 

To explore the biological significance of prognostic features, 

Spearman's correlation coefficients were calculated between 

each feature and mRNA expression values. Genes within 

the top 10% correlation range were selected for downstream 
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analysis. Significantly correlated genes were subjected to Gene 

Ontology Biological Process (GO-BP) enrichment analysis 

using the Cluster Profiler R package. Overrepresented pathways 

were identified, and false discovery rate (FDR) correction was 

applied. Enriched GO terms with FDR-adjusted p < 0.05 were 

considered statistically significant. 

4. Results 

4.1. Patient Cohorts and Survival 

A total of 447 HNSC cases from TCGA-HNSC and 142 cases 

from CPTAC-HNSC were evaluated for overall survival. Among 

these patients, 208 TCGA-HNSC cases (46.5%) and 55 CPTAC- 

HNSC cases (38.7%) experienced death events during the study 

period. The mean follow-up duration (± standard deviation) was 

936.3 ± 917.4 days in the TCGA-HNSC cohort and 925.5 ± 

548.2 days in the CPTAC-HNSC cohort. A log-rank test revealed 

no statistically significant difference in survival distributions 

between these two cohorts (p = 0.1446) (Fig 1). Overall clinical 

features weres summarized in Table 1. Of the total participants, 

490 samples from the TCGA dataset and 94 samples from the 

HNSCC dataset had corresponding RNA expression data, 

making them eligible for downstream molecular analyses. 

 

 

Figure 1: Overall workflow of the study. 

Table 1: Summary of TCGA and CPTAC cohorts 
 

 (Total (n=596 (CPTAC (n=146 (TCGA (n=450 *P value 

(Age (years 
(n=595) (n=146) (n=449) 

0.961 
(11.3) 61.1 (9.0) 61.2 (12.0) 61.1 

(Lymph Nodes (n 
(n=376) 

NA 
(n=376) 

NA 
(22.3) 35.8 (22.3) 35.8 

(Lymph Nodes by H&E (n 
(n=361) 

NA 
(n=361) 

NA 
(4.4) 2.2 (4.4) 2.2 

(Overall Survival (days 
(n=589) (n=142) (n=447) 

0.894 
(843.0) 933.7 (548.2) 925.5 (917.5) 936.3 

Gender (n=596) (n=146) (n=450) 
 

0.001< female (23.3%) 139 (11.6%) 17 (27.1%) 122 

male (76.7%) 457 (88.4%) 129 (72.9%) 328 

Death (n=593) (n=143) (n=450) 
 

0.153 Occured (44.7%) 265 (% 39.2) 56 (% 46.4) 209 

Not occured (55.3%) 328 (% 60.8) 87 (% 53.6) 241 

T Stage (n=554) (n=146) (n=408)  

 

 

0.06 

1 (% 9.2) 51 (% 7.5) 11 (% 9.8) 40 

2 (% 32.9) 182 (% 40.4) 59 (% 30.1) 123 

3 (% 22.4) 124 (% 24.0) 35 (% 21.8) 89 

4 (% 35.6) 197 (% 28.1) 41 (% 38.2) 156 

N Stage (n=552) (n=118) (n=434)  

 

 

0.001< 

0 (% 47.8) 264 (% 38.1) 45 (% 50.5) 219 

1 (% 14.1) 78 (% 20.3) 24 (% 12.4) 54 

2 (% 34.8) 192 (% 33.1) 39 (% 35.3) 153 

3 (% 3.3) 18 (% 8.5) 10 (% 1.8) 8 

M Stage (n=562) (n=137) (n=425) 
 

0.357 0 (% 98.9) 556 (% 100.0) 137 (% 98.6) 419 

1 (% 1.1) 6 (% 0.0) 0 (% 1.4) 6 
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Clinical Stage (n=549) (n=146) (n=403)  

 

 

0.036 

1 (% 5.6) 31 (% 6.2) 9 (% 5.5) 22 

2 (% 18.4) 101 (% 21.2) 31 (% 17.4) 70 

3 (% 20.2) 111 (% 26.7) 39 (% 17.9) 72 

4 (% 55.7) 306 (% 45.9) 67 (% 59.3) 239 

Primary LN Presence (n=423) 
 

NA 

(n=423) 
 

NA 0 (% 10.6) 45 (% 10.6) 45 

1 (% 89.4) 378 (% 89.4) 378 

Tumor Grade (n=581) (n=146) (n=435)  

 

 

0.004 

1 (% 14.1) 82 (% 17.8) 26 (% 12.9) 56 

2 (% 63.2) 367 (% 69.9) 102 (% 60.9) 265 

3 (% 21.5) 125 (% 12.3) 18 (% 24.6) 107 

4 (% 1.2) 7 (% 0.0) 0 (% 100.0) 7 

Smoking History (n=436)  

 

NA 

(n=436)  

 

NA 
Non-smoker (% 37.4) 163 (% 37.4) 163 

Ex-smoker (% 27.5) 120 (% 27.5) 120 

Current smoker (% 35.1) 153 (% 35.1) 153 

Margin Status (n=410)  

 

NA 

(n=410)  

 

NA 
Close (% 12.0) 49 (% 12.0) 49 

Negative (% 74.9) 307 (% 74.9) 307 

Positive (% 13.2) 54 (% 13.2) 54 

Perineural Invasion (n=324) 
 

NA 

(n=324) 
 

NA No (% 52.5) 170 (% 52.5) 170 

Yes (% 47.5) 154 (% 47.5) 154 

Lymphovascular Invasion (n=317) 
 

NA 

(n=317) 
 

NA No (% 64.7) 205 (% 64.7) 205 

Yes (% 35.3) 112 (% 35.3) 112 

Alcohol History (n=439) 
 

NA 

(n=439) 
 

NA No (% 34.2) 150 (% 34.2) 150 

Yes (% 65.8) 289 (% 65.8) 289 

Lymphnode Neck Dissection (n=448) 
 

NA 

(n=448) 
 

NA No (% 15.8) 71 (% 15.8) 71 

Yes (% 84.2) 377 (% 84.2) 377 

Pathological Nodal Extracapsular Spread (n=333)  

 

NA 

(n=333)  

 

NA 
No Extranodal Extension (% 67.3) 224 (% 67.3) 224 

Microscopic Extension (% 21.6) 72 (% 21.6) 72 

Gross Extension (% 11.1) 37 (% 11.1) 37 
 

P value is t-test or Chi-square test* 

4.2. Foundation Features and Survival Analysis Using 

Multiple Methods 

Each feature slide extraction model’s detailed was summarized 

in Table 2. All extracted features were stored in a structured 

format for subsequent statistical and bioinformatics analyses 

(Appendix 1). 

From the stepwise variable selection for a Cox proportional 

hazards were runned in all foundation features, PRISM identified 

116 features (9.1%) that were significantly associated with 

survival, while Prov-Giga Path identified 31 features (4.0%) and 

MADELEINE 38 features (7.4%) in TCGAdataset. In the CPTAC 

 

 

dataset, PRISM identified 400 (31.3%) significant features, Prov- 

Giga Path identified 168 (21.9%), and MADELEINE identified 

159 (31.1%). Best cutoff figures in both cohort groups and 

features were showen in Figure 2. Of those significant features, 

701 (54.8%) for PRISM, 379 (49.3%) features for Prov-Giga 

Path and 289 (56.4%) for MADELEINE were significant in both 

datasets. To further explore the molecular correlates of these 

survival-associated features, the study assessed the proportion of 

mRNAs with absolute Spearman correlation coefficients above 

0.3. In the CPTAC dataset, 1.64% of PRISM extracted features, 

2.09% of Prov-Giga Path extracted features and 0.89% of 
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MADELEINE extracted features met this criterion. By contrast, 

these percentages were lower in the TCGA dataset, at 0.28% for 

PRISM 0.003% for Prov-Giga Path and 0.08% for MADELEINE. 

Several genes appeared repeatedly among the most strongly 

correlated features. For example, in the TCGA dataset, Giga 

path identified PXYLP1, DIPK2A, MYB, CCDC150, and GLS2 

as notably correlated, while in the CPTAC dataset, BCL10, 

RLF, KLHL2P1, ZBTB16, and ARHGEF1 emerged. Similarly, 

in Madeleine, the most correlated genes in the TCGA dataset 

were CCDC150, TNFRSF12A, AREG, ARSI, and PXYLP1, 

whereas in the CPTAC dataset, MAPK6, FAM83A-AS1, 

DUOX1, JUP, and BCL2L2 were highlighted. PRISM’s most 

prominent correlations in the TCGA dataset included GLS2, 

KRT14, ACTN1, LOC730101, and PXYLP1, and in the CPTAC 

dataset, S100A8, SFN, KRT6A, TENT5B, and KRT6B were 

especially relevant. Gene Ontology (GO) enrichment analyses 

were also conducted on the identified features. Of the survival- 

associated features, 249 (35.5%) from PRISM, 77 (26.6%) 

from Prov-Giga Path, and 19 (5.0%) from MADELEINE 

mapped to at least one enriched GO term. PRISM’s analyses 

highlighted the importance of epidermis development, whereas 

Prov-Giga Path showed strong enrichment for epidermal cell 

differentiation, epidermis development, intermediate filament 

organization, and keratinocyte differentiation. In contrast, skin 

development emerged prominently from MADELEINE results. 

On average, each survival-significant feature was annotated 

with 49.0 GO terms in PRISM, 40.6 in Prov-Giga Path, and 28.1 

in MADELEINE. Of the 6193 GO terms investigated, 46 GO 

terms common to all three methods, and 1677 terms were shown 

at least one of the models. 

 

 

.Figure 2: Venn Diagram for GO-BP Terms in Each Foundation Group 
 

Figure 3: Survival Plots for Top Statistically Significant Features in TCGA-HNSC and CPTAC-HNSC. 
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Table 2: Summary of slide foundtaion models 
 

 Pixel size of Patches Magnification of Patches Number of slide Features Etc 

MADELEINE x 224 224 10x 512 
 

x, y needed Prov-GigaPath x 224 224 20x 768 

PRISM x 256 256 10x 1280 

 

Table 3: Summary of statistically significant slide foundation features after stepwise selection in the Cox proportional hazards regression model 

is performed 

 

 Both TCGA* only CPTAC† only 

PRISM (3.5%) 45 (5.5%) 71 (27.7%) 355 

Prov-GigaPath (0.7%) 5 (3.4%) 26 (21.2%) 163 

MADELEINE 17 21 142 

 
*The Cancer Genome Atlas 

†Office of Cancer Clinical Proteomics Research 

Table 4: Top 5 Key Features of High-Performing Pathology Foundation Models Based on C-Index Evaluation 
 

PRISM Prov-GigaPath MADELEINE 
*TCGA †CPTAC *TCGA †CPTAC *TCGA †CPTAC 

0.72 0.735 0.719 0.742 0.716 0.731 

0.716 0.735 0.716 0.725 0.714 0.719 

0.716 0.733 0.716 0.722 0.713 0.709 

0.715 0.73 0.713 0.719 0.713 0.707 

0.713 0.729 0.713 0.718 0.712 0.704 

*The Cancer Genome Atlas 

†Office of Cancer Clinical Proteomics Research 

Table 5: five GO terms of best common p-value’s features in pathology foundtaion model from TCGA(The Cancer Genome Atlas) and CPTA- 

C(Office of Cancer Clinical Proteomics) Research 

 

Model ID Description p.adjust 

 

 

 

 

PRISM 

GO:0031424 Keratinization 1.72E-04 

GO:0008544 epidermis development 6.91E-04 

GO:0000725 recombinational repair 1.37E-03 

GO:0006275 regulation of DNA replication 1.37E-03 

GO:0000724 double-strand break repair via homologous recombination 1.37E-03 

 

 

 

 

Prov-GigaPath 

GO:0006260 DNA replication 2.80E-07 

GO:0006261 DNA-templated DNA replication 1.03E-06 

GO:0006302 double-strand break repair 4.46E-06 

GO:0090329 regulation of DNA-templated DNA replication 7.64E-06 

GO:0036297 interstrand cross-link repair 1.42E-05 

 

 

 

 

MADELEINE 

GO:0006302 double-strand break repair 4.24E-05 

GO:2000779 regulation of double-strand break repair 3.59E-04 

GO:0006282 regulation of DNA repair 1.24E-03 

GO:2000781 positive regulation of double-strand break repair 6.62E-03 

GO:0045739 positive regulation of DNA repair 6.62E-03 
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5. Discussion 

development and are expected to become an integral part of 

ongoing advances in digital diagnostics [20,21]. The emergence 

of pathology foundation models represents a paradigm shift in 

the field of digital pathology and AI-assisted diagnostics. This 

study investigated survival-related features in head and neck 

squamous cell carcinoma (HNSC) by integrating data from 

two large consortia (TCGA and CPTAC) and applying multiple 

slide feature extraction models (PRISM, Prov-Giga Path, and 

MADELEINE). The analysis to find significant revealed a range 

of image-derived features that correlated with clinical outcomes. 

Additionally, several features were found to be significantly 

associated with mRNA expression patterns, suggesting potential 

molecular underpinnings for the observed prognostic signals. 

One notable finding was the broad number of features identified 

as survival-associated within individual datasets. While this may 

indicate the presence of true biological heterogeneity, it could 

also reflect the varying sensitivities of different computational 

pipelines. Models such as PRISM, for example, identified 

a relatively high proportion of significant features, whereas 

Madeleine found fewer but still meaningful associations. This 

discrepancy underscores the potential value of applying multiple 

analytic methods to large-scale histopathology datasets: each 

model leverages distinct architectures and training strategies, 

capturing unique aspects of tumor morphology. Further 

support for the morphological and molecular complexity of 

HNSC emerged from the correlation analysis, which showed 

that certain genes consistently appeared as top correlates with 

slide features. The identification of genes involved in structural 

integrity (e.g., keratin family members), immune regulation, and 

cell signaling pathways suggests that both the composition of 

the tumor microenvironment and the intrinsic characteristics of 

cancer cells shape disease progression. Although the proportion 

of mRNAs that reached a high correlation threshold varied 

between the CPTAC and TCGA datasets, recurring themes across 

cohorts point to common molecular processes, such as epithelial 

differentiation and the regulation of inflammatory pathways. 

The Gene Ontology (GO) enrichment further illuminated these 

processes. In particular, enriched terms relating to epidermal 

cell differentiation, keratinocyte development, and intermediate 

filament organization align with the well-known disruption of 

epithelial architecture in HNSC. The variation in the number of 

annotated GO terms across PRISM, Giga path, and Madeleine 

highlights how different computational frameworks may 

emphasize distinct facets of tumor biology, even as they converge 

on certain core processes. One key observation is that although 

survival distributions did not differ significantly between TCGA 

and HNSCC, substantial heterogeneity in gene expression 

signatures was still evident. This might reflect the extensive 

genomic and clinical complexity typical of head and neck 

cancers, which are influenced by an array of factors including 

environmental exposures (e.g., tobacco, alcohol), human 

papillomavirus (HPV) status, anatomical site differences, and 

treatment modalities [22,23]. The moderate to high percentages 

of significant gene features identified within each method 

underscore the complexity of HNSCC, where multiple pathways 

likely drive tumor progression and influence prognosis. Despite 

the lack of inter-cohort survival differences, considerable 

heterogeneity emerged in gene expression signatures. This 

heterogeneity is consistent with the multifactorial nature of 

HNSC pathogenesis and progression. Many tumor-associated 

pathways likely operate simultaneously, driving invasive 

behavior, metastatic potential, and therapy resistance. In line 

with this, our multi-method approach (Giga path, Madeleine, 

PRISM) identified overlapping yet distinct sets of survival- 

associated features and correlated genes. Such variability 

highlights the value of employing multiple analytic strategies 

to capture the breadth of molecular diversity in HNSC. Among 

the identified genes, several stood out for their established or 

emerging roles in cancer. For example, BCL10 is known to be 

involved in NF-κB signaling and has been implicated in various 

lymphoid malignancies, though its potential role in epithelial 

tumors is less well-characterized.(24) MYB, classically 

considered a proto-oncogene in hematological malignancies, 

may also modulate proliferation and differentiation in solid 

tumors [25]. JUP (junction plakoglobin) and keratin family 

members such as KRT6B and KRT14 participate in maintaining 

epithelial integrity; dysregulation of these genes could contribute 

to the invasive phenotype characteristic of HNSC [26]. Their 

recurrent appearance across multiple analytical approaches and 

datasets strengthens the hypothesis that alterations in structural 

and cell-adhesion pathways underpin malignant transformation 

and progression in the head and neck region. Gene Ontology 

(GO) enrichment analyses offered additional discrapancy 

on these foundtaion models. PRISM frequently identified 

processes tied to epidermis development, whereas Gigapath 

emphasized keratinocyte migration and, in some cases, the 

positive regulation of proteasomal protein catabolic processes. 

Indeed, prior studies have implicated these pathways in HNSC 

pathogenesis, suggesting that proteostasis, epithelial integrity, 

and migration are central to tumor aggressiveness [27-29]. As 

each method also detected unique subsets of significant genes 

and GO terms, it suggested that integrating multiple analytic 

platforms may provide a more comprehensive understanding 

of the molecular heterogeneity present in HNSCC. From a 

clinical standpoint, the integration of imaging features, survival 

data, and transcriptomic profiles hints at potential strategies 

for more personalized care. Features that reliably distinguish 

high-risk from low-risk patients could be used to tailor 

treatment regimens, such as the intensity of surgery, radiation, 

or adjuvant therapies. Moreover, the recurrent associations 

with genes involved in structural and immune pathways raise 

the possibility of targeted interventions either in the form of 

novel small-molecule inhibitors or immunomodulatory agents. 

Despite these promising insights, several challenges remain. 

Although combining datasets can increase statistical power, it 
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also introduces variability stemming from differences in patient 

demographics, data acquisition procedures, and treatment 

protocols. tandardized quality control measures, multicenter 

validation, and larger patient cohorts are needed to confirm the 

robustness and generalizability of any candidate biomarkers 

identified. Additionally, a lack of uniform criteria for defining 

“best p-value cutoffs” may introduce biases in survival analyses, 

emphasizing the importance of reproducibility in future 

work. In conclusion, this study highlights the added value 

of leveraging large-scale digital pathology images, multiple 

computational feature-extraction pipelines, and transcriptomic 

data to advance our understanding of HNSC. The results 

suggest that morphological features captured by deep learning 

models can uncover biologically relevant signals tied to patient 

outcomes, and that these signals often converge on pathways 

linked to epithelial structure and inflammation. Future studies 

incorporating multi-omic approaches and prospective clinical 

validation will be critical to translating these computational 

findings into actionable strategies that can improve prognosis 

and treatment selection in head and neck oncology. 

6. Conclusion 

Pathologic Foundation models in HNSC could identify 

morphological features which are statistically significant with 

overall survials and might be tied to critical molecular pathways, 

potentially guiding personalized treatment strategies. Though 

variations in model’s features persist, these approaches could 

be one way for significantly enhancing patient care through 

earlier and more accurate diagnostics, paving the way for larger 

multimodal HNSC studies. 
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