

Case Report and Review of Primary Gallbladder Gastrointestinal Stromal Tumour

Yanmei Ma^{1,2}, Zhonghua Huang², Lu Zhang² and Mumin Shao^{2*}

¹Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, China

²Department of Pathology, The Fourth Clinical Medical College of Guangzhou, University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China

*Corresponding author:

Mumin Shao,
Department of Pathology, The Fourth Clinical
Medical College of Guangzhou, University of
Chinese Medicine, Shenzhen Traditional
Chinese Medicine Hospital, Shenzhen, China

Received: 03 Jan 2026

Accepted: 13 Jan 2026

Published: 21 Jan 2026

J Short Name: COS

Copyright:

©2026 Mumin Shao. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and build
upon your work non-commercially

Keywords:

GIST; Gallbladder; Morphological Changes; Immunohistochemical Testing

Citation:

Mumin Shao, Case Report and Review of Primary Gallbladder Gastrointestinal Stromal Tumour. Clinics of Surgery® 2026; V11(1): 1-4

1. Abstract

1.1. Background

Gastrointestinal stromal tumours (GIST) are mesenchymal tumours primarily located in the gastrointestinal tract, representing the majority of gastrointestinal mesenchymal tumours. Primary gallbladder GIST are exceptionally rare, with fewer than 20 cases documented in the existing literature.

1.2. Case Presentation

We report a unique case of a 25-year-old woman who exhibited symptoms and imaging changes consistent with gallbladder adenomyosis. The diagnosis was confirmed through histological examination. Additionally, we conduct a comprehensive review of the existing literature to elucidate this rare pathology.

1.3. Conclusion

This case underscores the significance of pathology in the diagnosis of primary gallbladder GIST. Further research and case studies are essential to enhance our understanding of its pathogenesis and to identify optimal treatment strategies.

2. Background

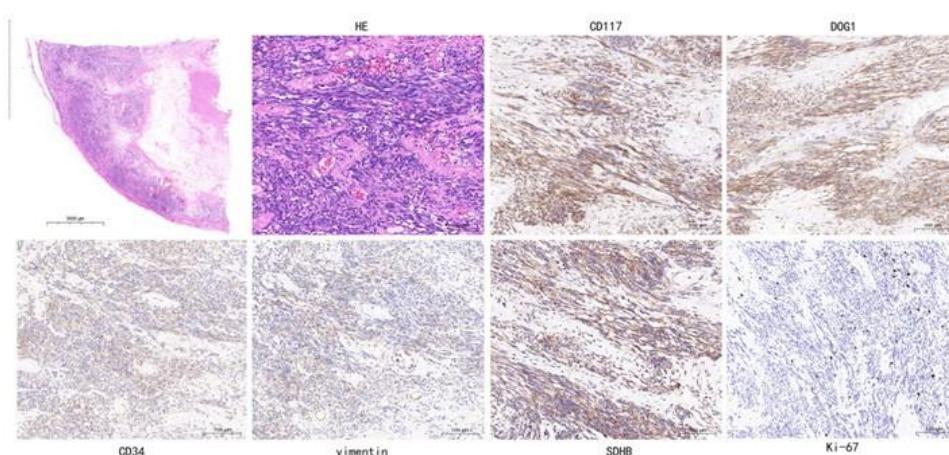
GIST was first described in 1960 as gastric epithelioid leiomyomas and were further classified as such by the World Health Organization (WHO) in 1969. The evolution of immunohistochemistry, electron microscopy, and molecular biology led Mazur and Clark [1] to identify these tumours as "gastrointestinal stromal tumours" in 1983, advancing the understanding of their histogenesis. It is believed that GIST originates from Cajal

cells, essential stem cells of the gastrointestinal tract that are distributed between the muscle layers of the gastrointestinal tract and regulate visceral movement. These cells are found in the subepithelial and muscular layers of the gallbladder [2,3]. The first report of gallbladder GIST appeared in 2000 [4]. Due to the rarity of gallbladder GIST, their study is complex and primarily relies on histological findings and immunohistochemical detection.

3. Case Report

A 25-year-old woman presented with a 2-year history of subxiphoid pain, which worsened after the consumption of greasy foods. There was no reported history of jaundice or significant weight loss. Physical examination revealed no evidence of skin or scleral jaundice, and the Murphy sign was negative. Routine blood tests indicated a high leukocyte count ($16.19 \times 10^9/L$) and an elevated neutrophil count ($13.69 \times 10^9/L$). Liver function tests were within normal limits. Tumour markers were all in the normal range (carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 125, carbohydrate antigen 15-3, and carbohydrate antigen 19-9). Ultrasound examination showed that the gallbladder size was normal, although the wall of the basal gallbladder was thickened to approximately 4.5 mm. small honeycomb echoes and small strong echoes were observed in the thickened wall of the gallbladder, along with a strong sediment echo in the gallbladder cavity. These findings were thought to indicate of gallbladder adenomyosis and silt stones (Figure 1). Subsequently, laparoscopic partial cholecystectomy was performed.

Figure 1: Preoperative ultrasound reveals a dilated gallbladder with wall thickening.


4. Materials and Methods

The 3.5 μm paraffin sections were utilized for haematoxylin as well as eosin staining and immunohistochemical analysis. Immunohistochemical analyses were performed using biotin-per-oxidase complex methods with appropriate positive and negative controls. The primary antibodies included CD117 (monoclonal, ready-to-use), DOG-1 (monoclonal, 1:100), CD34 (monoclonal, 1:80), smooth muscle actin (SMA) (monoclonal, 1:80), desmin (monoclonal, 1:150), S-100 (monoclonal, 1:150), CD68 (monoclonal, 1:200), CK (monoclonal, 1:250), STAT6 (monoclonal, ready-to-use), Bcl-2 (monoclonal, ready-to-use), β -catenin (monoclonal, 1:200), and Ki-67 (monoclonal, 1:300). All antibodies were obtained from Maxin Biotech Co., Ltd. in China.

4.1. Pathological Findings

In the pathological review, the partial gallbladder (basal part)

measured 2.5 cm \times 2.5 cm \times 1.6 cm. The maximum wall thickness reached 10 mm, exhibiting a pale, gelatinous appearance. Microscopically (Figure 2), tumour cells infiltrated the entire wall of the gallbladder, displaying a spindle shape and arranged in fascicles and bundles. The tumour did not involve the serous membrane. There was partial necrosis and a low mitotic count [maximum 3/5mm²]. Immunohistochemical detection included CD117, DOG-1, CD34, Vimentin, S-100, SMA, desmin, CD68, ck, STAT6, Bcl-2, β -catenin and Ki-67. The tumour cells exhibited diffuse staining for CD117, DOG1, CD34, vimentin and SDHB (Figure 2). SMA and other markers tested negative. Ki-67 labelling index was approximately 1 per 100 cells, indicating a low proliferative index. The diagnosis of primary GIST of the gallbladder was established based on the criteria outlined in the existing literature for primary GIST of the gastrointestinal tract.

Figure 2: The wall of gallbladder is replaced by hypercellular spindle cells and partial necrosis (H&E, $\times 0.8$). Spindle cells are interspersed with fascicle patterns (H&E, $\times 200$). Tumour cells are stained diffusely for CD117, DOG1, CD34, vimentin and SDHB (Immunostain $\times 200$). Ki-67 was in a low proliferative index, and the positive cells were mainly inflammatory cells (Immunostain $\times 200$).

5. Discussion

GIST is a gastrointestinal tumour derived from stromal precursor cells (Cajal stromal cells). Cajal stromal cells are located in the connective tissue of the muscular layer of the digestive tract. These cells are also present in the subepithelial and muscular layers of the gallbladder [2]. This is the histological basis for gallbladder stromal tumour. GIST can occur in any part of the gastrointestinal tract, and it is common in the stomach and small intestine [4]. Primary gallbladder GIST is very rare. Since it was first reported in 2000, about 12 cases have been reported in the indexed literature [4,6-17]. This study presents a rare case of gallbladder GIST confirmed by histological and immunohistochemical analyses.

We summarize the reported cases [4,6-17], including the one we reported (Table 1). Gallbladder stromal tumours are reported across a broad age range, 25-79 years old, the median age is 62.58. Most cases were reported in women (92.3%). Clinically, symptoms were non-specific, with patients typically experiencing abdominal pain (75%), jaundice (33.3%), fever (33.3%), or other dyspeptic symptoms. Ultrasonography may reveal thickening of the gallbladder wall or irregular hypoechoic masses, whereas computed tomography (CT) imaging may reveal enhanced, heterogeneous soft tissue lesions near the gallbladder. In this case, ultrasound images suggested gallbladder adenomyosis and gallstones without characteristic changes. Imaging findings are lacking in abnormal manifestations, and it is difficult to distinguish biliary carcinoma, gallbladder adenomyosis, and other tumours.

Table 1: Demographic, Clinical, Histopathological, and Immunohistochemical Characteristics of Reported Cases (Including Present Case).

Feature Category	Characteristic	Value / Proportion (n/N)
Demographics	Median age (years)	62.6
	Age range (years)	25-79
	Female	12/13 (92.3%)
	Male	1/13 (7.7%)
Clinical Features	Abdominal pain	9/12 (75.0%)
	Jaundice	4/12 (33.3%)
	Fever	4/12 (33.3%)
Imaging Findings	Gallstones	6/13 (46.2%)
	Thickened wall	11/13 (84.6%)
	Spread	2/13 (15.4%)
	Polypoid lesion	1/13 (7.7%)
Histopathology	Tumor size (max diameter)	0.5-7.5 cm
	Cell morphology: Spindle	9/13 (69.2%)
	Cell morphology: Epithelioid	2/13 (15.4%)
	Cell morphology: Mixed	2/13 (15.4%)
	Mitosis (>5/50 HPF)	6/11 (54.5%)
Immunohistochemistry	Necrosis	6/10 (60.0%)
	CD117 positive	11/12 (91.7%)
	CD34 positive	4/10 (40.0%)
	Vimentin positive	7/7 (100%)
	Desmin positive	2/6 (33.3%)

The diagnosis mainly depends on pathological examination and immunohistochemical testing. Pathologically, the gallbladder stromal tumor typically varies in size from 0.5 to 7.5cm, with a firm or slightly gelatinous texture. Microscopically, the cell morphology was spindle cell, epithelioid cell, or mixed, mainly spindle cell (69.2%). Most cases showed mitotic images, and 54.5% of the cases more than 5 mitotic per 50 high-power fields. Necrosis is often present (60%), regardless of tumour size. Immunohistochemical staining is critical for diagnosis, and markers such as CD117, DOG-1, CD34, and vimentin are typically expressed. Negative staining for SMA and S-100 helps differentiate GIST from other mesenchymal tumours. Interestingly, one case was negative for CD117 and C-KIT genetic test but positive for a mutation in the PDGFRA gene [16]. This findings light the importance of molecular assays, including PDGFRA and C-KIT mutation testing, as complementary diagnostic tools for cases with unusual immunohistochemical profiles.

In conclusion, primary gallbladder GIST is an exceedingly rare entity with non-specific symptoms and imaging findings, that often pose significant challenges in clinical practice, leading to delayed diagnosis. Accurate diagnosis mainly relies on pathological and immunohistochemical analysis in clinical. Although surgical resection is the primary therapeutic approach, further research and case studies are crucial to improve understanding of its pathogenesis and optimal treatment strategies.

6. Acknowledgments

This case report is supported by Shenzhen Science and Technology Program (JCYJ20240813152429038).

References

1. Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. *The American journal of surgical pathology*. 1983; 7(6): 507-519.
2. Hinescu ME, Ardeleanu C, Gherghiceanu M. Interstitial Cajal-like cells in human gallbladder. *Journal of molecular histology*. 2007; 38(4): 275-284.
3. Stamatakos M, Douzinas E, Stefanaki C. Gastrointestinal stromal tumor. *World journal of surgical oncology*. 2009; 7: 61.
4. Ortiz-Hidalgo C, de Leon Bojorge B. Stromal tumor of the gallbladder with phenotype of interstitial cells of Cajal: a previously unrecognized neoplasm. *The American journal of surgical pathology*. 2000; 24(10): 1420-1423.
5. Gupta A. Gallbladder GIST: A review of literature. *Polski przeglad chirurgiczny*. 2019; 92(1): 34-37.
6. Park JK, Choi SH, Lee S, Min KO. Malignant gastrointestinal stromal tumor of the gallbladder. *Journal of Korean medical science*. 2004; 19(5): 763-767.
7. Mendoza-Marin M, Hoang MP, Albores-Saavedra J. Malignant stromal tumor of the gallbladder with interstitial cells of Cajal phenotype. *Archives of pathology & laboratory medicine*. 2002; 126(4): 481-483.
8. Peerlinck ID, Irvin TT, Sarsfield PT. GIST (gastro-intestinal stromal tumour) of the gallbladder: a case report. *Acta chirurgica Belgica*. 2004; 104(1): 107-109.
9. Furihata M, Fujimori T, Imura J, Ono Y. Malignant stromal tumor, so called “gastrointestinal stromal tumor”, with rhabdomyomatous differentiation occurring in the gallbladder. *Pathology, research and practice*. 2005; 201(8-9): 609-613.
10. Al-Daraji WI, Prescott RJ, Al-Mahmoud RM. Cytological findings in a primary GIST of the gallbladder. *Cytopathology: official journal of the British Society for Clinical Cytology*. 2009; 20(5): 332-335.
11. Al-Daraji WI, Makhlof HR, Miettinen M, Montgomery EA. Primary gallbladder sarcoma: a clinicopathologic study of 15 cases, heterogeneous sarcomas with poor outcome, except pediatric botryoid rhabdomyosarcoma. *The American journal of surgical pathology*. 2009; 33(6): 826-834.
12. Li Gang, Gao Li, Liu Rui, Hui Xiangui. Case report and pathological feature analysis of gallbladder primary gastrintestinal stromal tumor. *Chin J Hepatobiliary Surg*. 2009; 15(09): 710-711.
13. Petrou A, Alexandrou P, Papalambros A, Saetta A. A Malignant Gastrointestinal Stromal Tumor of the Gallbladder Immunoreactive for PDGFRA and Negative for CD 117 Antigen (c-KIT). *HPB surgery : a world journal of hepatic, pancreatic and biliary surgery*, 2011, 327192.
14. Bolanaki H, Delladetsima I, Argyropoulou P, Kapranou A. Primary Malignant Gastrointestinal Stromal Tumor (GIST) of the Gallbladder: Report of a Case. *Journal of gastrointestinal cancer*. 2012; 43: S151–S155.
15. Kostov DV, Kobakov GL. Gastrointestinal stromal tumour of the gallbladder. *HPB: the official journal of the International Hepato Pancreato Biliary Association*. 2012; 14(2): 150.
16. Yan Wenmao, Xu MiaoSheng, Shi Jingdong, Yuan Huisheng, Cheng Shi, Zheng Jianwei. A case of primary stromal tumor of gallbladder. *Chin J Hepatobiliary Surg*. 2014; 20(2): 155-155.
17. Kataoka N, Oura S, Furuta A. Intracystic gastrointestinal stromal tumor developed in the round ligament of the liver. *Radiology case reports*. 2024; 19(8): 3152-3156.